От микроорганизмов до мегаполисов. Поиск компромисса между прогрессом и будущим планеты
Ни одно дерево не растет до небес, как и ни один артефакт, структура или процесс; и модели ограниченного роста характеризуют развитие машин и технических возможностей так же, как описывают рост населения и расширение империй. Все процессы распространения и внедрения неизбежно должны соответствовать этой модели: не важно, быстрый или медленный рост демонстрирует траектория на начальном этапе – в конце концов за ним последует значительное замедление темпов роста по мере того, как процесс асимптотически приближается к насыщению и часто достигает его (иногда после многих десятилетий распространения) всего за несколько процентов, даже за доли процентов до максимума. В 1880 году ни в одном доме не было электричества, но сколько зданий в городах Запада не подключено к электричеству сегодня?
Учитывая распространенность феноменов, демонстрирующих ограниченный рост, неудивительно, что многие исследователи стремились вписать их в разнообразные математические функции. Два основных класса траекторий ограниченного роста включают S-образный (сигмоидальный) и ограниченный экспоненциальный рост. В десятках работ даны описания оригинальных производных и последующих модификаций этих кривых. Они рассмотрены в обширных обзорах (Banks, 1994; Tsoularis, 2001), а лучший обзор, пожалуй, приведен в таблице S1 у Мирвольда (Myhrvold, 2013), где систематически сравниваются уравнения и ограничивающие условия для более 70 нелинейных функций роста.